Project Vision: RAG Transformation ==================================== **For Developers: Long-term Strategic Vision** .. note:: **Assessment Date:** October 23, 2025 **Version:** |version| **Status:** Strategic Planning Document **Reviewer:** Development Team **Timeline:** Multi-phase, 12-24 months .. contents:: Table of Contents :local: :depth: 3 Executive Summary ----------------- RePORTaLiN's Long-term Vision ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Transform RePORTaLiN from a **data processing pipeline** into a comprehensive **Retrieval-Augmented Generation (RAG) system** that combines advanced document processing with semantic search and LLM-powered intelligent querying. **Current State:** - βœ… Excel-to-JSONL data extraction pipeline - βœ… De-identification and encryption for PHI protection - βœ… Country-specific privacy regulation compliance - βœ… Robust logging and error handling **Future State:** - 🎯 PDF document extraction and parsing (annotated CRFs) - 🎯 Semantic search with vector embeddings - 🎯 LLM-powered context-aware query responses - 🎯 Multi-format data integration (PDF + Excel + CSV) - 🎯 Interactive web dashboard for researchers - 🎯 Advanced analytics and visualization What is the RAG Vision? ~~~~~~~~~~~~~~~~~~~~~~~~ RePORTaLiN will evolve into a **Retrieval-Augmented Generation (RAG)** system that: 1. **Extracts** structured and unstructured data from multiple sources: - PDF documents (annotated Case Report Forms) - Excel workbooks (data dictionaries and mappings) - CSV/tabular datasets (clinical data) 2. **Processes** data with security and privacy as first-class concerns: - De-identification of Protected Health Information (PHI) - AES-256 encryption for data at rest - Country-specific regulatory compliance (HIPAA, GDPR, etc.) 3. **Indexes** content using semantic embeddings: - Vector embeddings for similarity search - Chunking strategies for optimal retrieval - Multi-modal embedding support (text + structured data) 4. **Retrieves** relevant context for user queries: - Semantic search across all data sources - Hybrid search (keyword + vector similarity) - Cross-document relationship discovery 5. **Generates** intelligent, context-aware responses: - LLM-powered natural language answers - Citation and source tracking - Confidence scoring and validation Target Users ~~~~~~~~~~~~ - **Clinical Research Coordinators** - Query patient data and study progress - **Epidemiologists** - Analyze trends and patterns across datasets - **Biostatisticians** - Extract structured data for statistical analysis - **Data Managers** - Validate data quality and completeness - **Research Staff** - Access and search documentation efficiently Strategic Roadmap ----------------- Phase 1: Foundation & Vector Search (Months 1-3) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Priority: High** | **Complexity: Medium** **Goals:** - Set up vector embedding infrastructure - Implement semantic search capabilities - Add PDF document extraction **Deliverables:** 1. **Vector Embedding System** - OpenAI embeddings API integration - Local embedding model support (sentence-transformers) - Embedding generation for existing JSONL data - Vector storage (Pinecone, Weaviate, or ChromaDB) 2. **PDF Document Processing** - PyPDF2/pdfplumber integration - Text extraction and cleaning - Annotated CRF parsing - Metadata extraction 3. **Semantic Search Engine** - Vector similarity search - Hybrid search (keyword + semantic) - Relevance scoring - Result ranking and filtering **Success Metrics:** - Search latency < 500ms for 95th percentile - Retrieval accuracy > 85% on test queries - Support for 10,000+ document chunks Phase 2: Intelligence & Context (Months 4-6) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Priority: High** | **Complexity: High** **Goals:** - Integrate LLM for query understanding and response generation - Implement advanced retrieval strategies - Add caching and optimization **Deliverables:** 1. **LLM Integration** - OpenAI GPT-4 API integration - Local LLM support (Ollama, llama.cpp) - Prompt engineering for clinical research domain - Context window management 2. **Advanced Retrieval** - Re-ranking with cross-encoders - Query expansion and reformulation - Multi-hop reasoning - Citation and source tracking 3. **Performance Optimization** - Redis caching layer - Query result caching with TTL - Embedding cache - Database query optimization **Success Metrics:** - Response generation time < 2 seconds - Answer accuracy > 90% on validation set - Cache hit rate > 60% Phase 3: User Interface & Monitoring (Months 7-9) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Priority: Medium** | **Complexity: Medium** **Goals:** - Build interactive web dashboard - Implement comprehensive monitoring - Add user management and access control **Deliverables:** 1. **Web Dashboard** - Modern React/Vue.js frontend - Natural language query interface - Document browsing and preview - Result visualization and export - Search history and saved queries 2. **Monitoring & Observability** - Prometheus metrics collection - Grafana dashboards - OpenTelemetry tracing - Performance profiling - Error tracking (Sentry) 3. **Security & Access Control** - User authentication (OAuth 2.0) - Role-based access control (RBAC) - Audit logging - Session management **Success Metrics:** - User satisfaction score > 4.0/5.0 - System uptime > 99.5% - Mean time to resolution < 1 hour Phase 4: Advanced Features & Scale (Months 10-12) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Priority: Low** | **Complexity: High** **Goals:** - Scale to production workloads - Add advanced analytics - Implement automated workflows **Deliverables:** 1. **Scalability & Performance** - Horizontal scaling with Kubernetes - Load balancing and auto-scaling - Database sharding and replication - CDN for static assets - Async task processing (Celery) 2. **Advanced Analytics** - Trend analysis and visualization - Predictive modeling - Anomaly detection - Data quality scoring - Custom report generation 3. **Automation & Integration** - Scheduled data ingestion - Automated quality checks - RESTful API for external systems - Webhook notifications - Export to common formats (Excel, CSV, PDF) **Success Metrics:** - Support for 100,000+ documents - Concurrent users > 100 - Query throughput > 1,000 queries/hour Technical Architecture Vision ------------------------------ High-Level System Architecture ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: text β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Input Data Sources (Multiple Types) β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ PDF Documents β”‚ β”‚ Excel Files β”‚ β”‚ CSV/Tabular β”‚ β”‚ β”‚ β”‚ (Annotated β”‚ β”‚ (Mapping & β”‚ β”‚ (Datasets) β”‚ β”‚ β”‚ β”‚ CRFs) β”‚ β”‚ Dictionary) β”‚ β”‚ β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β–Ό β–Ό β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Document Extraction & Parsing Layer β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ PDF Parser β”‚ β”‚Excel/Workbookβ”‚ β”‚ CSV/Tabular β”‚ β”‚ β”‚ β”‚ (PyPDF2, β”‚ β”‚ Reader β”‚ β”‚ Parser β”‚ β”‚ β”‚ β”‚ pdfplumber) β”‚ β”‚ (openpyxl) β”‚ β”‚ (pandas) β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”‚ β–Ό β–Ό β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Data Security Layer (PHI Protection) β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ Step 1: De-identification β”‚ β”‚ β”‚ β”‚ - Identify PHI patterns (names, dates, IDs, contact) β”‚ β”‚ β”‚ β”‚ - Apply consistent masking/removal rules β”‚ β”‚ β”‚ β”‚ - Create encrypted mapping for re-identification β”‚ β”‚ β”‚ β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚ β”‚ β”‚ Step 2: Encryption (AES-256) β”‚ β”‚ β”‚ β”‚ - Encrypt de-identified data at rest β”‚ β”‚ β”‚ β”‚ - Secure key management (HSM/secrets manager) β”‚ β”‚ β”‚ β”‚ - Audit trail of all access and operations β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Unified Data Processing & Chunking Layer β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ - Normalize across data types (PDF/Excel/CSV) β”‚ β”‚ β”‚ β”‚ - Extract structured fields and metadata β”‚ β”‚ β”‚ β”‚ - Create semantic chunks (optimal size: 200-500 tokens)β”‚ β”‚ β”‚ β”‚ - Preserve context and relationships β”‚ β”‚ β”‚ β”‚ - Generate embeddings via vector model β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Vector Storage & Indexing (Pinecone/Weaviate/ChromaDB) β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ - Store embeddings with metadata β”‚ β”‚ β”‚ β”‚ - Build similarity search indexes (HNSW/IVF) β”‚ β”‚ β”‚ β”‚ - Enable hybrid search (vector + keyword) β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Retrieval Engine (RAG Core) β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ Query Processing: β”‚ β”‚ β”‚ β”‚ 1. Embed user query β”‚ β”‚ β”‚ β”‚ 2. Vector similarity search (top-k chunks) β”‚ β”‚ β”‚ β”‚ 3. Re-rank with cross-encoder β”‚ β”‚ β”‚ β”‚ 4. Assemble context for LLM β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ LLM Generation Layer (OpenAI GPT-4 / Local LLMs) β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ - Context-aware prompt construction β”‚ β”‚ β”‚ β”‚ - Generate natural language response β”‚ β”‚ β”‚ β”‚ - Extract citations and sources β”‚ β”‚ β”‚ β”‚ - Validate and score confidence β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ User Interface & API Layer β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ Web Dashboardβ”‚ β”‚ REST API β”‚ β”‚ CLI Tool β”‚ β”‚ β”‚ β”‚ (React/Vue) β”‚ β”‚ (FastAPI) β”‚ β”‚ (Python) β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ Key Technology Stack ~~~~~~~~~~~~~~~~~~~~ **Current Stack:** - **Language:** Python 3.11+ - **Data Processing:** pandas, openpyxl - **Logging:** Python logging with custom formatters - **Security:** Cryptography library (AES-256) - **Configuration:** Environment variables + config.py **Planned Additions:** 1. **Vector Database:** - Primary: Pinecone (managed, production-ready) - Alternative: Weaviate (self-hosted, open-source) - Development: ChromaDB (lightweight, embedded) 2. **Embedding Models:** - OpenAI Ada-002 (production) - sentence-transformers (local, privacy-preserving) - BGE embeddings (state-of-the-art open-source) 3. **LLM Inference:** - OpenAI GPT-4 / GPT-3.5 Turbo (API) - Ollama (local deployment) - llama.cpp (efficient local inference) 4. **Web Framework:** - FastAPI (backend API) - React or Vue.js (frontend) - WebSocket support for real-time updates 5. **Monitoring:** - Prometheus (metrics) - Grafana (visualization) - OpenTelemetry (distributed tracing) - Sentry (error tracking) 6. **Infrastructure:** - Docker (containerization) - Kubernetes (orchestration) - Redis (caching) - PostgreSQL (metadata storage) Data Types and Processing ~~~~~~~~~~~~~~~~~~~~~~~~~~ The RAG system will handle three primary data categories: 1. **Annotated Forms (Complex PDFs)** - Case Report Forms (CRFs) from Indo-VAP study - Clinical assessment documents - Laboratory result reports - Follow-up visit documentation **Processing Strategy:** - Extract text with PyPDF2/pdfplumber - Preserve form structure and field relationships - Extract metadata (form ID, version, date) - Chunk with overlap for context preservation - Generate embeddings for semantic search 2. **Data Mapping & Dictionary (Excel/Workbook)** - Data dictionary specifications - Field mappings and definitions - Variable naming conventions - Value sets and code lists **Processing Strategy:** - Parse structured sheets (current implementation) - Extract schema relationships - Generate natural language descriptions - Link definitions to dataset fields 3. **Dataset Files (Tabular Format)** - Excel workbooks with clinical data - CSV files for export/import - Structured tabular data by visit/patient **Processing Strategy:** - De-identify PHI (current implementation) - Encrypt sensitive data (current implementation) - Convert to searchable format (JSONL, current) - Generate summary statistics - Create embeddings for patient cohorts Security and Privacy Architecture ---------------------------------- PHI Protection Strategy ~~~~~~~~~~~~~~~~~~~~~~~ **Current Implementation:** βœ… **De-identification Module** (``scripts/deidentify.py``): - Pattern-based PHI detection (regex + validation) - Multiple PHI types supported (18+ categories) - Pseudonymization with reversible mapping - Date shifting with interval preservation - Country-specific patterns (US, India, etc.) βœ… **Encryption Layer** (AES-256): - Data at rest encryption - Secure key management - Encrypted mapping storage - Audit trail logging **Future Enhancements:** 🎯 **Named Entity Recognition (NER)**: - Medical NER models (spaCy, transformers) - Person/organization detection - Location identification - Custom clinical entity extraction 🎯 **Differential Privacy**: - Noise injection for aggregate queries - k-anonymity for cohort queries - l-diversity for sensitive attributes 🎯 **Access Control**: - Role-based access control (RBAC) - Attribute-based access control (ABAC) - Time-limited access tokens - Audit logging with tamper-proof storage Regulatory Compliance ~~~~~~~~~~~~~~~~~~~~~ **Current Compliance:** - βœ… HIPAA de-identification (Safe Harbor method) - βœ… Country-specific regulations (14 countries) - βœ… Encrypted storage - βœ… Audit logging **Planned Compliance:** - 🎯 GDPR right to erasure - 🎯 CCPA data subject rights - 🎯 21 CFR Part 11 (electronic records) - 🎯 ISO 27001 information security - 🎯 SOC 2 Type II certification path Implementation Priorities -------------------------- Priority Tier 1: Core RAG Functionality ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Timeline:** Months 1-6 1. **Vector Embeddings** (Month 1-2) - Set up OpenAI embeddings API - Implement local embedding fallback - Generate embeddings for existing data - Validate embedding quality 2. **Vector Storage** (Month 2-3) - Deploy Pinecone or ChromaDB - Implement indexing pipeline - Add metadata filtering - Test retrieval accuracy 3. **PDF Processing** (Month 3-4) - Integrate PyPDF2/pdfplumber - Implement text extraction - Add chunking strategies - Test on annotated CRFs 4. **LLM Integration** (Month 4-6) - OpenAI GPT-4 API setup - Prompt engineering - Context assembly - Response validation Priority Tier 2: User Experience ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Timeline:** Months 7-9 1. **Web Dashboard** (Month 7-8) - FastAPI backend - React/Vue.js frontend - Query interface - Result visualization 2. **Monitoring** (Month 8-9) - Prometheus metrics - Grafana dashboards - Error tracking - Performance profiling Priority Tier 3: Scale & Production ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ **Timeline:** Months 10-12 1. **Scalability** (Month 10-11) - Kubernetes deployment - Load balancing - Auto-scaling - Database optimization 2. **Advanced Features** (Month 11-12) - Analytics dashboard - Automated workflows - API integrations - Custom reporting Success Metrics and KPIs ------------------------- Phase 1 Metrics (Foundation) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - **Retrieval Accuracy:** > 85% on test queries - **Search Latency:** < 500ms (95th percentile) - **Embedding Generation:** < 100ms per chunk - **Index Size:** Support 10,000+ chunks Phase 2 Metrics (Intelligence) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - **Answer Accuracy:** > 90% on validation set - **Response Time:** < 2 seconds end-to-end - **Cache Hit Rate:** > 60% - **User Satisfaction:** > 4.0/5.0 Phase 3 Metrics (Production) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - **System Uptime:** > 99.5% - **Concurrent Users:** > 100 - **Query Throughput:** > 1,000 queries/hour - **Document Capacity:** > 100,000 documents Risk Assessment and Mitigation ------------------------------- Technical Risks ~~~~~~~~~~~~~~~ 1. **Embedding Quality** - **Risk:** Poor retrieval accuracy due to low-quality embeddings - **Mitigation:** Test multiple embedding models, implement re-ranking - **Likelihood:** Medium | **Impact:** High 2. **LLM Hallucinations** - **Risk:** Generated responses contain incorrect information - **Mitigation:** Strict prompt engineering, citation requirements, confidence scoring - **Likelihood:** High | **Impact:** High 3. **Scaling Challenges** - **Risk:** Performance degradation at scale - **Mitigation:** Horizontal scaling, caching, async processing - **Likelihood:** Medium | **Impact:** Medium 4. **Security Vulnerabilities** - **Risk:** PHI exposure or data breach - **Mitigation:** Comprehensive security audits, penetration testing, encryption - **Likelihood:** Low | **Impact:** Critical Operational Risks ~~~~~~~~~~~~~~~~~ 1. **Resource Costs** - **Risk:** High API costs for OpenAI embeddings/LLM - **Mitigation:** Implement caching, use local models where possible - **Likelihood:** High | **Impact:** Medium 2. **Development Timeline** - **Risk:** Delays due to complexity or scope creep - **Mitigation:** Phased rollout, MVP focus, regular reviews - **Likelihood:** Medium | **Impact:** Medium 3. **User Adoption** - **Risk:** Low user adoption or satisfaction - **Mitigation:** User-centered design, iterative feedback, comprehensive training - **Likelihood:** Low | **Impact:** High Appendix: Related Documents ---------------------------- Current Documentation ~~~~~~~~~~~~~~~~~~~~~ - :doc:`architecture` - Current system architecture - :doc:`future_enhancements` - Near-term improvements - :doc:`production_readiness` - Production deployment guide - :doc:`code_integrity_audit` - Code quality assessment Future Documentation (To Be Created) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - **RAG Implementation Guide** - Step-by-step implementation - **Embedding Model Evaluation** - Comparison of embedding models - **LLM Prompt Engineering** - Best practices for clinical domain - **Vector Database Comparison** - Pinecone vs Weaviate vs ChromaDB - **Security Audit Report** - Comprehensive security assessment - **Performance Benchmarking** - Load testing and optimization results Next Steps ---------- Immediate Actions (Next 30 Days) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1. **Technical Spike: Vector Databases** - Evaluate Pinecone, Weaviate, ChromaDB - Benchmark performance and cost - Select primary vector store 2. **Proof of Concept: PDF Extraction** - Extract text from 10 sample CRFs - Test chunking strategies - Validate data quality 3. **Architecture Design Document** - Detail system components - Define API contracts - Specify data flows 4. **Resource Planning** - Estimate API costs (OpenAI) - Infrastructure requirements - Development timeline Team Discussion Points ~~~~~~~~~~~~~~~~~~~~~~ - Is OpenAI acceptable for production, or must we use local models? - What is the acceptable budget for API costs? - What are the compliance requirements we must meet? - What is the expected user volume? - What is the priority order of features? Contact and Feedback -------------------- For questions, concerns, or suggestions about this vision document: - **Technical Discussion:** Architecture review meetings - **Strategic Planning:** Project stakeholder reviews - **Implementation Questions:** Development team sync **This is a living document. Update as vision evolves and priorities shift.** .. versionadded:: 0.8.0 Initial RAG transformation vision document created