Project Vision: RAG Transformation

For Developers: Long-term Strategic Vision

Note

Assessment Date: October 23, 2025 Version: 0.8.6 Status: Strategic Planning Document Reviewer: Development Team Timeline: Multi-phase, 12-24 months

Executive Summary

RePORTaLiN’s Long-term Vision

Transform RePORTaLiN from a data processing pipeline into a comprehensive Retrieval-Augmented Generation (RAG) system that combines advanced document processing with semantic search and LLM-powered intelligent querying.

Current State:
  • βœ… Excel-to-JSONL data extraction pipeline

  • βœ… De-identification and encryption for PHI protection

  • βœ… Country-specific privacy regulation compliance

  • βœ… Robust logging and error handling

Future State:
  • 🎯 PDF document extraction and parsing (annotated CRFs)

  • 🎯 Semantic search with vector embeddings

  • 🎯 LLM-powered context-aware query responses

  • 🎯 Multi-format data integration (PDF + Excel + CSV)

  • 🎯 Interactive web dashboard for researchers

  • 🎯 Advanced analytics and visualization

What is the RAG Vision?

RePORTaLiN will evolve into a Retrieval-Augmented Generation (RAG) system that:

  1. Extracts structured and unstructured data from multiple sources:

    • PDF documents (annotated Case Report Forms)

    • Excel workbooks (data dictionaries and mappings)

    • CSV/tabular datasets (clinical data)

  2. Processes data with security and privacy as first-class concerns:

    • De-identification of Protected Health Information (PHI)

    • AES-256 encryption for data at rest

    • Country-specific regulatory compliance (HIPAA, GDPR, etc.)

  3. Indexes content using semantic embeddings:

    • Vector embeddings for similarity search

    • Chunking strategies for optimal retrieval

    • Multi-modal embedding support (text + structured data)

  4. Retrieves relevant context for user queries:

    • Semantic search across all data sources

    • Hybrid search (keyword + vector similarity)

    • Cross-document relationship discovery

  5. Generates intelligent, context-aware responses:

    • LLM-powered natural language answers

    • Citation and source tracking

    • Confidence scoring and validation

Target Users

  • Clinical Research Coordinators - Query patient data and study progress

  • Epidemiologists - Analyze trends and patterns across datasets

  • Biostatisticians - Extract structured data for statistical analysis

  • Data Managers - Validate data quality and completeness

  • Research Staff - Access and search documentation efficiently

Strategic Roadmap

Phase 1: Foundation & Vector Search (Months 1-3)

Priority: High | Complexity: Medium

Goals:

  • Set up vector embedding infrastructure

  • Implement semantic search capabilities

  • Add PDF document extraction

Deliverables:

  1. Vector Embedding System

    • OpenAI embeddings API integration

    • Local embedding model support (sentence-transformers)

    • Embedding generation for existing JSONL data

    • Vector storage (Pinecone, Weaviate, or ChromaDB)

  2. PDF Document Processing

    • PyPDF2/pdfplumber integration

    • Text extraction and cleaning

    • Annotated CRF parsing

    • Metadata extraction

  3. Semantic Search Engine

    • Vector similarity search

    • Hybrid search (keyword + semantic)

    • Relevance scoring

    • Result ranking and filtering

Success Metrics:

  • Search latency < 500ms for 95th percentile

  • Retrieval accuracy > 85% on test queries

  • Support for 10,000+ document chunks

Phase 2: Intelligence & Context (Months 4-6)

Priority: High | Complexity: High

Goals:

  • Integrate LLM for query understanding and response generation

  • Implement advanced retrieval strategies

  • Add caching and optimization

Deliverables:

  1. LLM Integration

    • OpenAI GPT-4 API integration

    • Local LLM support (Ollama, llama.cpp)

    • Prompt engineering for clinical research domain

    • Context window management

  2. Advanced Retrieval

    • Re-ranking with cross-encoders

    • Query expansion and reformulation

    • Multi-hop reasoning

    • Citation and source tracking

  3. Performance Optimization

    • Redis caching layer

    • Query result caching with TTL

    • Embedding cache

    • Database query optimization

Success Metrics:

  • Response generation time < 2 seconds

  • Answer accuracy > 90% on validation set

  • Cache hit rate > 60%

Phase 3: User Interface & Monitoring (Months 7-9)

Priority: Medium | Complexity: Medium

Goals:

  • Build interactive web dashboard

  • Implement comprehensive monitoring

  • Add user management and access control

Deliverables:

  1. Web Dashboard

    • Modern React/Vue.js frontend

    • Natural language query interface

    • Document browsing and preview

    • Result visualization and export

    • Search history and saved queries

  2. Monitoring & Observability

    • Prometheus metrics collection

    • Grafana dashboards

    • OpenTelemetry tracing

    • Performance profiling

    • Error tracking (Sentry)

  3. Security & Access Control

    • User authentication (OAuth 2.0)

    • Role-based access control (RBAC)

    • Audit logging

    • Session management

Success Metrics:

  • User satisfaction score > 4.0/5.0

  • System uptime > 99.5%

  • Mean time to resolution < 1 hour

Phase 4: Advanced Features & Scale (Months 10-12)

Priority: Low | Complexity: High

Goals:

  • Scale to production workloads

  • Add advanced analytics

  • Implement automated workflows

Deliverables:

  1. Scalability & Performance

    • Horizontal scaling with Kubernetes

    • Load balancing and auto-scaling

    • Database sharding and replication

    • CDN for static assets

    • Async task processing (Celery)

  2. Advanced Analytics

    • Trend analysis and visualization

    • Predictive modeling

    • Anomaly detection

    • Data quality scoring

    • Custom report generation

  3. Automation & Integration

    • Scheduled data ingestion

    • Automated quality checks

    • RESTful API for external systems

    • Webhook notifications

    • Export to common formats (Excel, CSV, PDF)

Success Metrics:

  • Support for 100,000+ documents

  • Concurrent users > 100

  • Query throughput > 1,000 queries/hour

Technical Architecture Vision

High-Level System Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              Input Data Sources (Multiple Types)             β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
β”‚  β”‚  PDF Documents  β”‚  β”‚ Excel Files  β”‚  β”‚ CSV/Tabular  β”‚   β”‚
β”‚  β”‚  (Annotated     β”‚  β”‚ (Mapping &   β”‚  β”‚ (Datasets)   β”‚   β”‚
β”‚  β”‚   CRFs)         β”‚  β”‚  Dictionary) β”‚  β”‚              β”‚   β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
            β”‚                   β”‚                  β”‚
            β–Ό                   β–Ό                  β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚         Document Extraction & Parsing Layer                  β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚  β”‚  PDF Parser    β”‚  β”‚Excel/Workbookβ”‚  β”‚ CSV/Tabular      β”‚ β”‚
β”‚  β”‚  (PyPDF2,      β”‚  β”‚ Reader       β”‚  β”‚ Parser           β”‚ β”‚
β”‚  β”‚   pdfplumber)  β”‚  β”‚ (openpyxl)   β”‚  β”‚ (pandas)         β”‚ β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
            β”‚                   β”‚                  β”‚
            β–Ό                   β–Ό                  β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   Data Security Layer (PHI Protection)                       β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚  β”‚  Step 1: De-identification                             β”‚ β”‚
β”‚  β”‚  - Identify PHI patterns (names, dates, IDs, contact)  β”‚ β”‚
β”‚  β”‚  - Apply consistent masking/removal rules             β”‚ β”‚
β”‚  β”‚  - Create encrypted mapping for re-identification     β”‚ β”‚
β”‚  β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ β”‚
β”‚  β”‚  Step 2: Encryption (AES-256)                         β”‚ β”‚
β”‚  β”‚  - Encrypt de-identified data at rest                 β”‚ β”‚
β”‚  β”‚  - Secure key management (HSM/secrets manager)        β”‚ β”‚
β”‚  β”‚  - Audit trail of all access and operations           β”‚ β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                      β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚    Unified Data Processing & Chunking Layer                  β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚  β”‚  - Normalize across data types (PDF/Excel/CSV)         β”‚ β”‚
β”‚  β”‚  - Extract structured fields and metadata              β”‚ β”‚
β”‚  β”‚  - Create semantic chunks (optimal size: 200-500 tokens)β”‚ β”‚
β”‚  β”‚  - Preserve context and relationships                  β”‚ β”‚
β”‚  β”‚  - Generate embeddings via vector model                β”‚ β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                      β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚    Vector Storage & Indexing (Pinecone/Weaviate/ChromaDB)   β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚  β”‚  - Store embeddings with metadata                      β”‚ β”‚
β”‚  β”‚  - Build similarity search indexes (HNSW/IVF)          β”‚ β”‚
β”‚  β”‚  - Enable hybrid search (vector + keyword)             β”‚ β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                      β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚    Retrieval Engine (RAG Core)                               β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚  β”‚  Query Processing:                                      β”‚ β”‚
β”‚  β”‚  1. Embed user query                                    β”‚ β”‚
β”‚  β”‚  2. Vector similarity search (top-k chunks)             β”‚ β”‚
β”‚  β”‚  3. Re-rank with cross-encoder                          β”‚ β”‚
β”‚  β”‚  4. Assemble context for LLM                            β”‚ β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                      β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚    LLM Generation Layer (OpenAI GPT-4 / Local LLMs)          β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚  β”‚  - Context-aware prompt construction                   β”‚ β”‚
β”‚  β”‚  - Generate natural language response                  β”‚ β”‚
β”‚  β”‚  - Extract citations and sources                       β”‚ β”‚
β”‚  β”‚  - Validate and score confidence                       β”‚ β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                      β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚      User Interface & API Layer                              β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚  β”‚  Web Dashboardβ”‚  β”‚  REST API    β”‚  β”‚  CLI Tool        β”‚  β”‚
β”‚  β”‚  (React/Vue) β”‚  β”‚  (FastAPI)   β”‚  β”‚  (Python)        β”‚  β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Key Technology Stack

Current Stack:

  • Language: Python 3.11+

  • Data Processing: pandas, openpyxl

  • Logging: Python logging with custom formatters

  • Security: Cryptography library (AES-256)

  • Configuration: Environment variables + config.py

Planned Additions:

  1. Vector Database:

    • Primary: Pinecone (managed, production-ready)

    • Alternative: Weaviate (self-hosted, open-source)

    • Development: ChromaDB (lightweight, embedded)

  2. Embedding Models:

    • OpenAI Ada-002 (production)

    • sentence-transformers (local, privacy-preserving)

    • BGE embeddings (state-of-the-art open-source)

  3. LLM Inference:

    • OpenAI GPT-4 / GPT-3.5 Turbo (API)

    • Ollama (local deployment)

    • llama.cpp (efficient local inference)

  4. Web Framework:

    • FastAPI (backend API)

    • React or Vue.js (frontend)

    • WebSocket support for real-time updates

  5. Monitoring:

    • Prometheus (metrics)

    • Grafana (visualization)

    • OpenTelemetry (distributed tracing)

    • Sentry (error tracking)

  6. Infrastructure:

    • Docker (containerization)

    • Kubernetes (orchestration)

    • Redis (caching)

    • PostgreSQL (metadata storage)

Data Types and Processing

The RAG system will handle three primary data categories:

  1. Annotated Forms (Complex PDFs)

    • Case Report Forms (CRFs) from Indo-VAP study

    • Clinical assessment documents

    • Laboratory result reports

    • Follow-up visit documentation

    Processing Strategy:

    • Extract text with PyPDF2/pdfplumber

    • Preserve form structure and field relationships

    • Extract metadata (form ID, version, date)

    • Chunk with overlap for context preservation

    • Generate embeddings for semantic search

  2. Data Mapping & Dictionary (Excel/Workbook)

    • Data dictionary specifications

    • Field mappings and definitions

    • Variable naming conventions

    • Value sets and code lists

    Processing Strategy:

    • Parse structured sheets (current implementation)

    • Extract schema relationships

    • Generate natural language descriptions

    • Link definitions to dataset fields

  3. Dataset Files (Tabular Format)

    • Excel workbooks with clinical data

    • CSV files for export/import

    • Structured tabular data by visit/patient

    Processing Strategy:

    • De-identify PHI (current implementation)

    • Encrypt sensitive data (current implementation)

    • Convert to searchable format (JSONL, current)

    • Generate summary statistics

    • Create embeddings for patient cohorts

Security and Privacy Architecture

PHI Protection Strategy

Current Implementation:

βœ… De-identification Module (scripts/deidentify.py):

  • Pattern-based PHI detection (regex + validation)

  • Multiple PHI types supported (18+ categories)

  • Pseudonymization with reversible mapping

  • Date shifting with interval preservation

  • Country-specific patterns (US, India, etc.)

βœ… Encryption Layer (AES-256):

  • Data at rest encryption

  • Secure key management

  • Encrypted mapping storage

  • Audit trail logging

Future Enhancements:

🎯 Named Entity Recognition (NER):

  • Medical NER models (spaCy, transformers)

  • Person/organization detection

  • Location identification

  • Custom clinical entity extraction

🎯 Differential Privacy:

  • Noise injection for aggregate queries

  • k-anonymity for cohort queries

  • l-diversity for sensitive attributes

🎯 Access Control:

  • Role-based access control (RBAC)

  • Attribute-based access control (ABAC)

  • Time-limited access tokens

  • Audit logging with tamper-proof storage

Regulatory Compliance

Current Compliance:

  • βœ… HIPAA de-identification (Safe Harbor method)

  • βœ… Country-specific regulations (14 countries)

  • βœ… Encrypted storage

  • βœ… Audit logging

Planned Compliance:

  • 🎯 GDPR right to erasure

  • 🎯 CCPA data subject rights

  • 🎯 21 CFR Part 11 (electronic records)

  • 🎯 ISO 27001 information security

  • 🎯 SOC 2 Type II certification path

Implementation Priorities

Priority Tier 1: Core RAG Functionality

Timeline: Months 1-6

  1. Vector Embeddings (Month 1-2)

    • Set up OpenAI embeddings API

    • Implement local embedding fallback

    • Generate embeddings for existing data

    • Validate embedding quality

  2. Vector Storage (Month 2-3)

    • Deploy Pinecone or ChromaDB

    • Implement indexing pipeline

    • Add metadata filtering

    • Test retrieval accuracy

  3. PDF Processing (Month 3-4)

    • Integrate PyPDF2/pdfplumber

    • Implement text extraction

    • Add chunking strategies

    • Test on annotated CRFs

  4. LLM Integration (Month 4-6)

    • OpenAI GPT-4 API setup

    • Prompt engineering

    • Context assembly

    • Response validation

Priority Tier 2: User Experience

Timeline: Months 7-9

  1. Web Dashboard (Month 7-8)

    • FastAPI backend

    • React/Vue.js frontend

    • Query interface

    • Result visualization

  2. Monitoring (Month 8-9)

    • Prometheus metrics

    • Grafana dashboards

    • Error tracking

    • Performance profiling

Priority Tier 3: Scale & Production

Timeline: Months 10-12

  1. Scalability (Month 10-11)

    • Kubernetes deployment

    • Load balancing

    • Auto-scaling

    • Database optimization

  2. Advanced Features (Month 11-12)

    • Analytics dashboard

    • Automated workflows

    • API integrations

    • Custom reporting

Success Metrics and KPIs

Phase 1 Metrics (Foundation)

  • Retrieval Accuracy: > 85% on test queries

  • Search Latency: < 500ms (95th percentile)

  • Embedding Generation: < 100ms per chunk

  • Index Size: Support 10,000+ chunks

Phase 2 Metrics (Intelligence)

  • Answer Accuracy: > 90% on validation set

  • Response Time: < 2 seconds end-to-end

  • Cache Hit Rate: > 60%

  • User Satisfaction: > 4.0/5.0

Phase 3 Metrics (Production)

  • System Uptime: > 99.5%

  • Concurrent Users: > 100

  • Query Throughput: > 1,000 queries/hour

  • Document Capacity: > 100,000 documents

Risk Assessment and Mitigation

Technical Risks

  1. Embedding Quality

    • Risk: Poor retrieval accuracy due to low-quality embeddings

    • Mitigation: Test multiple embedding models, implement re-ranking

    • Likelihood: Medium | Impact: High

  2. LLM Hallucinations

    • Risk: Generated responses contain incorrect information

    • Mitigation: Strict prompt engineering, citation requirements, confidence scoring

    • Likelihood: High | Impact: High

  3. Scaling Challenges

    • Risk: Performance degradation at scale

    • Mitigation: Horizontal scaling, caching, async processing

    • Likelihood: Medium | Impact: Medium

  4. Security Vulnerabilities

    • Risk: PHI exposure or data breach

    • Mitigation: Comprehensive security audits, penetration testing, encryption

    • Likelihood: Low | Impact: Critical

Operational Risks

  1. Resource Costs

    • Risk: High API costs for OpenAI embeddings/LLM

    • Mitigation: Implement caching, use local models where possible

    • Likelihood: High | Impact: Medium

  2. Development Timeline

    • Risk: Delays due to complexity or scope creep

    • Mitigation: Phased rollout, MVP focus, regular reviews

    • Likelihood: Medium | Impact: Medium

  3. User Adoption

    • Risk: Low user adoption or satisfaction

    • Mitigation: User-centered design, iterative feedback, comprehensive training

    • Likelihood: Low | Impact: High

Next Steps

Immediate Actions (Next 30 Days)

  1. Technical Spike: Vector Databases

    • Evaluate Pinecone, Weaviate, ChromaDB

    • Benchmark performance and cost

    • Select primary vector store

  2. Proof of Concept: PDF Extraction

    • Extract text from 10 sample CRFs

    • Test chunking strategies

    • Validate data quality

  3. Architecture Design Document

    • Detail system components

    • Define API contracts

    • Specify data flows

  4. Resource Planning

    • Estimate API costs (OpenAI)

    • Infrastructure requirements

    • Development timeline

Team Discussion Points

  • Is OpenAI acceptable for production, or must we use local models?

  • What is the acceptable budget for API costs?

  • What are the compliance requirements we must meet?

  • What is the expected user volume?

  • What is the priority order of features?

Contact and Feedback

For questions, concerns, or suggestions about this vision document:

  • Technical Discussion: Architecture review meetings

  • Strategic Planning: Project stakeholder reviews

  • Implementation Questions: Development team sync

This is a living document. Update as vision evolves and priorities shift.

Added in version 0.8.0: Initial RAG transformation vision document created