Terminology Simplification Audit

For Developers: Documentation Language Review

This document tracks the simplification of technical terminology in user-facing documentation to ensure users have an easy-to-understand experience while developers retain access to precise technical details.

Date: October 23, 2025 Version: 0.8.8

Overview

The documentation has been audited to ensure:

  1. User guides use simple, non-technical language

  2. Developer guides maintain technical precision

  3. Code examples preserve technical accuracy

  4. Cross-references appropriately label technical content

Changes Made

Terminology Replacements in User Guides

The following technical terms were replaced with user-friendly alternatives:

General Technical Terms

  • moduletool / script (context-dependent)

  • function → kept only in code examples

  • APItechnical documentation / using in Python code

  • parametersetting / option

  • algorithmmethod

  • architecturedesign / technical design

  • parserecognize / read

  • patterndetection rule / kept in code examples

  • compile → kept only in code examples

  • REPLinteractive environments

  • dataclassconfiguration options

  • thread-safedesigned to work reliably

Specific Replacements

  1. troubleshooting.rst

    • Module Import ErrorsMissing Package Errors

    • ModuleNotFoundError → Error message saying a package is not found

    • Logging module enhancedLogging system enhanced

    • thread-safe and optimizeddesigned to work reliably

    • System architecture link → Technical system design

  2. introduction.rst

    • Dynamic dataset detectionWorks with any dataset folder automatically

    • Modular architectureEasy to customize

    • Command-line optionsOptions to run specific parts

  3. configuration.rst

    • detection algorithmautomatic detection

    • REPL/notebook compatibilityinteractive environments like Jupyter

    • normalize_dataset_name() functionautomatically cleans up dataset names

    • DeidentificationConfig dataclassconfiguration options

    • Utility Functions section → Helper Tools

    • Import from config moduleUse the configuration file

    • Module not foundConfig file not found

    • API documentationtechnical documentation

  4. installation.rst

    • De-identification moduleDe-identification script

    • ModuleNotFoundErrorPackage not found

  5. quickstart.rst

    • Module not foundPackage not found

    • ModuleNotFoundErrorPackage not found

  6. deidentification.rst

    • pattern detectiondetection / smart detection

    • Extensible pattern supportEasy to extend with new detection rules

    • module automatically processestool automatically processes

    • Algorithm: AES-128Encryption method: AES-128

    • Algorithm: SHA-256Hash method: SHA-256

    • Regular pattern updatesRegular updates to detection rules

    • module implementstool follows

    • Pattern MatchingDetection Speed

    • Pattern PriorityDetection Order

    • pattern prioritiesdetection order

    • intelligent multi-format date parsingsmart multi-format date recognition

    • API Reference section → Technical Reference

  7. country_regulations.rst

    • parsedrecognized

    • Python API section → Using in Python Code

    • API Reference section → Technical Reference

Preserved Technical Terms

The following remain in user guides as they appear only in:

  1. Code examples - Necessary for accurate Python code

    • pattern=re.compile()

    • DetectionPattern

    • custom_pattern

    • Variable and function names in code blocks

  2. Error messages - Exact Python error text for searchability

    • Kept in quotes for user recognition

  3. File/directory names - Exact system paths

    • .logs/

    • config.py

    • __pycache__

  4. Cross-references to developer docs - Labeled appropriately

    • Links to ../api/ sections

    • Links to ../developer_guide/ sections

Style Checker Enhancements

Updated scripts/utils/check_docs_style.sh to detect technical jargon:

Previous Detection:

  • Only checked for “For Users:” and “For Developers:” headers

  • Limited technical term detection

Enhanced Detection:

  • Checks for specific technical term phrases

  • Excludes code blocks from jargon detection

  • Provides detailed warnings with term locations

  • Focus on prose text, not code examples

New Technical Terms List:

TECH_TERMS=(
    "module reference"
    "function call"
    "class method"
    " API documentation"
    "parameter list"
    "decorator pattern"
    "singleton instance"
    "algorithm implementation"
    "dataclass definition"
    "instantiate object"
    "thread-safe implementation"
    "REPL environment"
    "__init__ method"
)

Verification Results

Sphinx Build Status:

  • Build succeeded: ✓

  • Warnings: 0

  • Errors: 0

  • HTML pages generated: 39

Style Checker Results:

  • User guide headers: ✓ All pass (8/8 files)

  • Developer guide headers: ✓ All pass (9/9 files)

  • Technical jargon in user guides: ✓ None found

  • Sphinx build: ✓ Success

Files Modified:

  1. docs/sphinx/user_guide/troubleshooting.rst

  2. docs/sphinx/user_guide/introduction.rst

  3. docs/sphinx/user_guide/configuration.rst

  4. docs/sphinx/user_guide/installation.rst

  5. docs/sphinx/user_guide/quickstart.rst

  6. docs/sphinx/user_guide/deidentification.rst

  7. docs/sphinx/user_guide/country_regulations.rst

  8. scripts/utils/check_docs_style.sh

Best Practices

Guidelines for Future Documentation

For User Guide Content:

  1. Use plain language

    • ❌ “The module instantiates a singleton pattern”

    • ✅ “The tool creates one instance automatically”

  2. Explain technical concepts simply

    • ❌ “Uses SHA-256 cryptographic hashing algorithm”

    • ✅ “Uses SHA-256 hash method for security”

  3. Avoid jargon in headings

    • ❌ “API Reference”

    • ✅ “Technical Reference” (in user guides)

  4. Code examples can use technical terms

    • Keep variable names and Python keywords as-is

    • Add explanatory text in plain language

For Developer Guide Content:

  1. Use precise technical terminology

    • ✅ “Implements singleton pattern with lazy initialization”

    • ✅ “Uses decorator pattern for cross-cutting concerns”

  2. Include implementation details

    • Algorithm names, complexity analysis

    • Design patterns, architectural decisions

    • API contracts, type signatures

  3. Reference specific code elements

    • Module names, class names, function signatures

    • Parameter types, return values

Testing Documentation Changes

Before committing documentation changes:

  1. Run style checker:

    bash scripts/utils/check_docs_style.sh
    
  2. Build documentation:

    cd docs/sphinx
    make clean
    make html
    
  3. Verify no warnings/errors:

    • Check build output for 0 warnings

    • Verify HTML generates correctly

  4. Manual review:

    • Read as a non-technical user

    • Check code examples still work

    • Verify cross-references are accurate

Automation

The style checker now runs automatically to enforce standards:

What It Checks:

  1. ✓ All user guides have “For Users:” header

  2. ✓ All developer guides have “For Developers:” header

  3. ✓ User guides don’t contain technical jargon (except in code)

  4. ✓ Sphinx builds without warnings or errors

How to Run:

# From project root
bash scripts/utils/check_docs_style.sh

Exit Codes:

  • 0 - All checks passed

  • 1 - Errors found (must fix)

  • Warnings reported but don’t fail the check

Compliance Status

Current Status: ✅ FULLY COMPLIANT

  • All user guides use simple, accessible language

  • All developer guides maintain technical precision

  • Automated enforcement in place

  • Documentation builds without errors

  • Style guide documented and followed

Enforcement Layers:

  1. Policy & Style Guide - documentation_style_guide.rst defines requirements and provides examples

  2. Quick Automation - scripts/utils/check_docs_style.sh validates basic compliance (daily use)

  3. Comprehensive Automation - scripts/utils/check_documentation_quality.py performs deep quality checks (quarterly)

  4. CI/CD Integration - .github/workflows/docs-quality-check.yml runs automated checks

  5. Git Control - .gitignore blocks non-compliant file types

See Also